Randomized Matrix Decompositions using R
نویسندگان
چکیده
The singular value decomposition (SVD) is among the most ubiquitous matrix factorizations. Specifically, it is a cornerstone algorithm for data analysis, dimensionality reduction and data compression. However, despite modern computer power, massive datasets pose a computational challenge for traditional SVD algorithms. We present the R package rsvd, which enables the fast computation of the SVD and related methods, facilitated by randomized algorithms. The rsvd package provides routines for computing the randomized singular value decomposition, randomized principal component analysis and randomized robust principal component analysis. Randomized algorithms provide an efficient computational framework for reducing the computational demands of traditional (deterministic) matrix factorizations. The key idea is to compute a compressed representation of the data using random sampling. This smaller (compressed) matrix captures the essential information that can then be used to obtain a low-rank matrix approximation. Several numerical examples demonstrate the usage of the rsvd package. The results show substantial accelerated computational times using the powerful concept of randomization.
منابع مشابه
Improved Low-rank Matrix Decompositions via the Subsampled Randomized Hadamard Transform
We comment on two randomized algorithms for constructing low-rank matrix decompositions. Both algorithms employ the Subsampled Randomized Hadamard Transform [14]. The first algorithm appeared recently in [9]; here, we provide a novel analysis that significantly improves the approximation bound obtained in [9]. A preliminary version of the second algorithm appeared in [7]; here, we present a mil...
متن کاملSublinear randomized algorithms for skeleton decompositions
A skeleton decomposition of a matrix A is any factorization of the form A:CZAR:, where A:C comprises columns of A, and AR: comprises rows of A. In this paper, we investigate the conditions under which random sampling of C and R results in accurate skeleton decompositions. When the singular vectors (or more generally the generating vectors) are incoherent, we show that a simple algorithm returns...
متن کاملRSVDPACK: An implementation of randomized algorithms for computing the singular value, interpolative, and CUR decompositions of matrices on multi-core and GPU architectures
RSVDPACK is a library of functions for computing low rank approximations of matrices. The library includes functions for computing standard (partial) factorizations such as the Singular Value Decomposition (SVD), and also so called “structure preserving” factorizations such as the Interpolative Decomposition (ID) and the CUR decomposition. The ID and CUR factorizations pick subsets of the rows/...
متن کاملSubspace Sampling and Relative-Error Matrix Approximation: Column-Row-Based Methods
Much recent work in the theoretical computer science, linear algebra, and machine learning has considered matrix decompositions of the following form: given an m×n matrix A, decompose it as a product of three matrices, C, U , and R, where C consists of a small number of columns of A, R consists of a small number of rows of A, and U is a small carefully constructed matrix that guarantees that th...
متن کاملRelative-Error CUR Matrix Decompositions
Many data analysis applications deal with large matrices and involve approximating the matrix using a small number of “components.” Typically, these components are linear combinations of the rows and columns of the matrix, and are thus difficult to interpret in terms of the original features of the input data. In this paper, we propose and study matrix approximations that are explicitly express...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1608.02148 شماره
صفحات -
تاریخ انتشار 2016